

A Comparative Analysis of Options for Managing Waste After Recycling-

Vancouver's Detailed Review of Waste to Energy, MBT and Landfill

Summary of Study Results presented to Southern Alberta Energy-from Waste Alliance October 29th, 2009

Overview

- 1) Context and Description of Technologies
- 2) Life Cycle Assessment
- 3) Air Emissions Comparisons
- 4) Financial Analysis

Metro Vancouver: a Zero Waste Region

- Zero Waste Challenge
 - Goal 1: Minimize waste generation
 - Goal 2: Maximize reuse, recycling and material & energy recovery
 - Diversion to increase from current level of 55%
 Programs identified to reach 70% diversion by 2015

Effect of Increased Waste Diversion

Waste Increase due to Population Growth (despite high diversion/recycling)

Technologies for Materials & Energy Recovery from MSW

- Mechanical Biological Treatment (MBT)
- Waste to Energy (WTE)
- Landfill, with landfill gas recovery and utilization

MBT Process Details

MBT Alternative Process

What does MBT do to the Waste?

- Additional recyclables: 5%
- Refuse Derived Fuel (RDF): 55%
- Residue to landfill: 40%

Value of RDF

- Can be used to replace natural gas or coal
 Cement kilns
 - Coal fired power plants
- Air pollution control upgrades likely required
- Heating value of RDF similar to wood or low grade coal

AECO

 Market value somewhere between 0% and 70% of coal or natural gas based on heating value

Mechanical Sorting Systems

Treatment Option: Mechanical Biological Treatment

Making RDF Pellets may be required

Economic Activity Generated by MBT

- Capital investment:
 - > \$100+ million
 - Over half of investment for local construction and supply contracts
- Operating personnel:
 - > 20 to 25 direct highly skilled jobs
 - > Jobs are long term for 20+ years
 - Indirect ongoing requirements for supplies and maintenance from local firms

Waste to Energy Details

- Mass burn technology used in analysis
 - Mass burn is a proven system with over 800 plants worldwide

AECO

- > Over 80% of world's facilities use mass burn
- Generates local, firm electricity with up to 27% electrical efficiency
- Least amount of waste preprocessing
- Easiest to finance

Technology Selection

- Ultimate technology will be decided through competitive process
- Locations to be determined through public process and may be in or out of region
- Generally, centralized facility will offer better economies of scale
- Ideally, site would support other users of energy, such as industrial steam and district heat
- Over 90% thermal efficiency possible with district energy systems

Energy Recovery and Losses

Example WTE in Metro Vancouver

Example of Modern WTE Facility in Lille, France

Treatment Option: Waste to Energy in Paris, France

WTE Facility in Paris, 500,000 tonnes per year

Economic Activity generated by WTE

- Capital investment:
 - > \$500+ million
 - Up to half of investment for local construction and supply contracts
- Operations:
 - > 50 direct highly skilled jobs
 - > Jobs are long term for 40 to 50 years
 - Indirect ongoing requirements for supplies and maintenance from local firms

Landfill Details

- Oldest waste management technology, extensively used in North America
- New landfills are fully lined with leachate collection (New bioreactor technology with leachate recirculation modeled for study)
- Landfill gas (LFG) recovery and utilization
- LFG capture modeled at 75% for new and existing landfills
- 10% of remaining LFG oxidized by cover, balance of LFG escapes to atmosphere

Disposal Option: Modern Landfill

Landfill Gas Collection Piping

Economic Activity Generated by new Landfill

- Capital investment of about \$70 to \$90 million for initial cell and infrastructure
 - Construction likely out of region
- Operations;
- 40 to 60 full time jobs
 - > Long term for life of landfill
 - Resourced from local region where landfill is situated
 - > Additional jobs for long distance hauling if out-ofregion landfill

Component Operations Costs (based on 500,000 tonne per year facilities)

- MBT \$45 per tonne
 > Add \$20 per tonne to pelletize
- WTE \$ 40 per tonne after credit for energy sales
- Landfill tipping fee \$18 per tonne
 Short haul \$10 per tonne
 Long haul \$17 per tonne

Does Size Matter?

- Economies of scale are achieved with all technologies
- Most obvious with WTE
- Also applies to MBT and landfill, but not so severe

Economies of Scale for WTE

Application of these technologies to Metro Vancouver's MSW

- 8 scenarios involving various combinations of WTE, MBT and landfill
- Life Cycle Assessment (LCA)
 - Energy balance
 - Emissions balance
- Financial analysis
 - > Levelized system costs
 - > Accounting costs
 - Cash flows
- All scenarios include continued use of Vancouver Landfill and Metro Vancouver WTE Facility

Eight Scenarios for Evaluation and Comparison

Life Cycle Analysis (LCA) for Emissions

- Key emissions assessed using LCA
 - Global implications
 - Fraser Valley airshed impacts
- Greenhouse gas emissions
 - > In provincial context (global emission)
- Energy production and consumption reviewed

Net Electricity Consumption & Production

Hot Water Generation for District Energy

Petroleum Fuel Balance

Fine Particulates PM 2.5 Emissions

NOx Emissions

SOx Emissions

VOC Emissions

2020 Projected Air Emissions in LFV from MSW Scenarios

Mercury Emissions Total

Dioxin and Furan Total Emissions

Mercury and Dioxins and Furans observations

- Mercury
 - Mercury emissions from waste management scenarios contribute less than 3% to LFV airshed
 - >WTE scenarios emit more mercury than landfilling scenarios
 - Estimated emissions only 25% of what Canada Wide Standards would allow
 - Mercury emissions will decline substantially when the Province's product stewardship programs focusing on removing mercury containing products are fully implemented
- Dioxins and Furans
 - Loading on LFV airshed from all scenarios around 1%
 - Landfill scenarios emit more dioxins and furans than WTE scenarios
 - Less than 10% of what Canada Wide Standards would allow

GHG Production

Both WTE and landfilling emit GHG

- WTE produces CO₂ from about 40% of the waste (the portion derived from hydrocarbons)
- Landfill GHG emissions are from escaped methane (21 times more harmful than CO₂)
- Electricity from WTE and burning landfill gas reduces the need to generate/import power from other sources (fossil fuels)
 - WTE produces far more electricity than landfills, so greater offsets
- Scenario modeled with largest WTE capacity found to have fewer GHG emissions than mostly landfill scenario
- Actual GHG emissions depend on local conditions and assumptions

Key Lessons from Life Cycle Analysis

- Substantial emission offsets are achieved by displacing fossil fuel energy with WTE
- Transportation is not a key source of air emissions, including GHG (but does consume energy)
- Displacing natural gas through district heating use avoids GHG and air emissions
- If coal sourced electricity is avoided, the GHG emissions of WTE are substantially lower than from landfilling
- Placing a facility outside the local airshed does not change total emissions, but reduces impact on the local airshed

Observations on Lower Fraser Valley Airshed Loading

- Generally, all scenarios have similar loadings on airshed
- Compared to current loadings on airshed from waste management activities, projected emissions will be lower in 2020 for all scenarios
- Emissions are not a deciding factor in scenario selection

Financial Analysis

Financial Model

- Purpose: to calculate relative costs of waste management alternatives
- Scope: system costs from transfer stations to disposal
 Costs associated with recycling, composting, diversion, transfer, education, and administration are not included
- Indicators:
 - Levelized lifecycle costs per tonne
 - > Annual accounting costs per tonne

System Assumptions

- Continued use of existing Metro Vancouver WTE facility for the duration of the projected timeframe
- VLF accepts up to 750,000 tonnes per year until full (timing varies depending on scenario)
- New in-region WTE facilities would be owned by Metro Vancouver
- All other facilities modelled as being privately owned and operated (costs are tipping fee only)

Discount Rate and Price Assumptions

- Discount rate: 5% (real)
- Energy values:
 District heat 70% price of natural gas
 Natural gas price \$6/GJ
 Electricity \$100/MWh
- Real escalation rates:
 - Natural gas 1%
 - ➢ Electricity − 0%
 - Truck transportation 0.3%

Cost Data

- *WTE*: Based on existing operation and industry standards for new facilities
- *MBT*: Based on some existing operations and industry estimates less reliable than other estimates
- Landfill: Based on information from existing landfills

Levelized System Costs

Accounting Costs

Accounting Costs for 3 Key Scenarios

Results

- WTE and landfilling have similar levelized costs lowest levelized cost is WTE with district heating
- WTE and landfilling have markedly different annual cost profile
 Landfilling is initially less expensive than WTE, but increasingly higher over long term
- MBT is the most costly scenario

Risks and Uncertainties

- Energy Values
 District heat
 Electricity price
- Volume of waste
- Regulatory/legal/senior government intervention
- Costs
 - Capital
 - > Ongoing fuel and operating

Overall assessment

- Key issue short vs. long term perspective
- WTE high energy values, especially electricity
- Landfilling lower short term costs; growing and higher in the long term
- Risks volume / regulatory-legal / cost
 Different but significant in all scenarios

THANK YOU

Principle of Conventional Combustion

Principle of Advanced Thermal Technologies

Pros and Cons of Advanced Thermal Technologies

<u>Pros</u>

- Few air emissions during syngas generation
- Lower CO₂ generated when syngas formed
- Ash can be vitrified with some processes
- Recovery of energy from waste
- Better environmental perception
- Smaller scale

Cons

Syngas must be cleaned, leaving residues

- CO₂ formed when syngas burned
- Vitrification has high energy requirement/cost
- Often lower energy recovery efficiency than conventional combustion systems
- No real environmental advantages over combustion if syngas is used for heat/power